Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7492, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980352

RESUMEN

Asymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 Å overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P3 binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Transferencia de Fosfolípidos , Humanos , Adenosina Trifosfatasas/metabolismo , Especificidad por Sustrato , Microscopía por Crioelectrón , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 8): 297-305, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924597

RESUMEN

The bacterial amino-acid transporter MhsT from the SLC6A family has been crystallized in complex with different substrates in order to understand the determinants of the substrate specificity of the transporter. Surprisingly, crystals of the different MhsT-substrate complexes showed interrelated but different crystal-packing arrangements. Space-group assignment and structure determination of these different crystal forms present challenging combinations of pseudosymmetry, twinning and translational noncrystallographic symmetry.


Asunto(s)
Cristalografía por Rayos X
3.
Elife ; 112022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35416773

RESUMEN

P4-ATPases flip lipids from the exoplasmic to the cytosolic leaflet, thus maintaining lipid asymmetry in eukaryotic cell membranes. Mutations in several human P4-ATPase genes are associated with severe diseases, for example in ATP8B1 causing progressive familial intrahepatic cholestasis, a rare inherited disorder progressing toward liver failure. ATP8B1 forms a binary complex with CDC50A and displays a broad specificity to glycerophospholipids, but regulatory mechanisms are unknown. Here, we report functional studies and the cryo-EM structure of the human lipid flippase ATP8B1-CDC50A at 3.1 Å resolution. We find that ATP8B1 is autoinhibited by its N- and C-terminal tails, which form extensive interactions with the catalytic sites and flexible domain interfaces. Consistently, ATP hydrolysis is unleashed by truncation of the C-terminus, but also requires phosphoinositides, most markedly phosphatidylinositol-3,4,5-phosphate (PI(3,4,5)P3), and removal of both N- and C-termini results in full activation. Restored inhibition of ATP8B1 truncation constructs with a synthetic peptide mimicking the C-terminal segment further suggests molecular communication between N- and C-termini in the autoinhibition and demonstrates that the regulatory mechanism can be interfered with by exogenous compounds. A recurring (G/A)(Y/F)AFS motif of the C-terminal segment suggests that this mechanism is employed widely across P4-ATPase lipid flippases in plasma membrane and endomembranes.


Asunto(s)
Adenosina Trifosfatasas , Colestasis Intrahepática , Fosfatidilinositoles , Adenosina Trifosfatasas/metabolismo , Membrana Celular/metabolismo , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Humanos , Mutación , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo
4.
J Mol Biol ; 433(16): 167062, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34023399

RESUMEN

P4-ATPases define a eukaryotic subfamily of the P-type ATPases, and are responsible for the transverse flip of specific lipids from the extracellular or luminal leaflet to the cytosolic leaflet of cell membranes. The enzymatic cycle of P-type ATPases is divided into autophosphorylation and dephosphorylation half-reactions. Unlike most other P-type ATPases, P4-ATPases transport their substrate during dephosphorylation only, i.e. the phosphorylation half-reaction is not associated with transport. To study the structural basis of the distinct mechanisms of P4-ATPases, we have determined cryo-EM structures of Drs2p-Cdc50p from Saccharomyces cerevisiae covering multiple intermediates of the cycle. We identify several structural motifs specific to Drs2p and P4-ATPases in general that decrease movements and flexibility of domains as compared to other P-type ATPases such as Na+/K+-ATPase or Ca2+-ATPase. These motifs include the linkers that connect the transmembrane region to the actuator (A) domain, which is responsible for dephosphorylation. Additionally, mutation of Tyr380, which interacts with conserved Asp340 of the distinct DGET dephosphorylation loop of P4-ATPases, highlights a functional role of these P4-ATPase specific motifs in the A-domain. Finally, the transmembrane (TM) domain, responsible for transport, also undergoes less extensive conformational changes, which is ensured both by a longer segment connecting TM helix 4 with the phosphorylation site, and possible stabilization by the auxiliary subunit Cdc50p. Collectively these adaptions in P4-ATPases are responsible for phosphorylation becoming transport-independent.


Asunto(s)
ATPasas Tipo P/química , ATPasas Tipo P/metabolismo , Secuencias de Aminoácidos , Metabolismo de los Lípidos , Lípidos/química , Familia de Multigenes , ATPasas Tipo P/genética , Fosforilación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
5.
Curr Opin Struct Biol ; 63: 65-73, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32492637

RESUMEN

Type 4 P-type ATPases (P4-ATPases) are lipid flippases that drive the active, inward directed translocation (flip) of lipids in eukaryotic membranes. The resulting lipid asymmetry potentiates the membrane and is essential for a wide range of cellular processes such as vesicle biogenesis and trafficking and membrane protein regulation, whereas dissipation of lipid asymmetry is required in blood coagulation and apoptosis. Through recent advances in cryo-electron microscopy, several landmark structures of yeast and human lipid flippases have been reported, highlighting the similarities and differences they share with the cation transporting P-type ATPases. Here, we discuss the recent lipid flippase structures in the context of subunit architecture and organization, auto-regulation and lipid transport.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Modelos Moleculares , Fosfolípidos/química , Fosfolípidos/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas Portadoras , Activación Enzimática , Humanos , Fosforilación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Levaduras
6.
Nature ; 571(7765): 366-370, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243363

RESUMEN

Type 4 P-type ATPases (P4-ATPases) are lipid flippases that drive the active transport of phospholipids from exoplasmic or luminal leaflets to cytosolic leaflets of eukaryotic membranes. The molecular architecture of P4-ATPases and the mechanism through which they recognize and transport lipids have remained unknown. Here we describe the cryo-electron microscopy structure of the P4-ATPase Drs2p-Cdc50p, a Saccharomyces cerevisiae lipid flippase that is specific to phosphatidylserine and phosphatidylethanolamine. Drs2p-Cdc50p is autoinhibited by the C-terminal tail of Drs2p, and activated by the lipid phosphatidylinositol-4-phosphate (PtdIns4P or PI4P). We present three structures that represent the complex in an autoinhibited, an intermediate and a fully activated state. The analysis highlights specific features of P4-ATPases and reveals sites of autoinhibition and PI4P-dependent activation. We also observe a putative lipid translocation pathway in this flippase that involves a conserved PISL motif in transmembrane segment 4 and polar residues of transmembrane segments 2 and 5, in particular Lys1018, in the centre of the lipid bilayer.


Asunto(s)
ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , Microscopía por Crioelectrón , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Transporte Biológico , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/ultraestructura , Activación Enzimática , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/ultraestructura
7.
Methods Enzymol ; 594: 85-99, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28779844

RESUMEN

Membrane proteins depend on their natural lipid environment for function, which makes them more difficult to study in isolation. A number of approaches that mimic the lipid bilayer of biological membranes have been described (nanodiscs, SMALPs), enabling novel ways to assay activity and elucidate structures of this important class of proteins. More recently, the use of saposin A, a protein that is involved in lipid transport, to form Salipro (saposin-lipid-protein) complexes was demonstrated for a range of membrane protein targets (Frauenfeld et al., 2016). The method is fast and requires few resources. The saposin-lipid-scaffold adapts to various sizes of transmembrane regions during self-assembly, forming a minimal lipid nanoparticle. This results in the formation of a well-defined membrane protein-lipid complex, which is desirable for structural characterization. Here, we describe a protocol to reconstitute the sarco-endoplasmic reticulum calcium ATPase (SERCA) into Salipro nanoparticles. The complex formation is analyzed using negative stain electron microscopy (EM), allowing to quickly determine an initial structure of the membrane protein and to evaluate sample conditions for structural studies using single-particle cryo-EM in a detergent-free environment.


Asunto(s)
Bioquímica/métodos , Lipoproteínas/química , Proteínas de Transporte de Membrana/química , Microscopía Electrónica/métodos , Saposinas/química , Animales , Bioquímica/instrumentación , Microscopía por Crioelectrón/métodos , Detergentes/química , Modelos Moleculares , Nanopartículas/química , Conformación Proteica , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/aislamiento & purificación
8.
J Biol Chem ; 292(19): 7954-7970, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28302728

RESUMEN

P4-ATPases, also known as phospholipid flippases, are responsible for creating and maintaining transbilayer lipid asymmetry in eukaryotic cell membranes. Here, we use limited proteolysis to investigate the role of the N and C termini in ATP hydrolysis and auto-inhibition of the yeast flippase Drs2p-Cdc50p. We show that limited proteolysis of the detergent-solubilized and purified yeast flippase may result in more than 1 order of magnitude increase of its ATPase activity, which remains dependent on phosphatidylinositol 4-phosphate (PI4P), a regulator of this lipid flippase, and specific to a phosphatidylserine substrate. Using thrombin as the protease, Cdc50p remains intact and in complex with Drs2p, which is cleaved at two positions, namely after Arg104 and after Arg 1290, resulting in a homogeneous sample lacking 104 and 65 residues from its N and C termini, respectively. Removal of the 1291-1302-amino acid region of the C-terminal extension is critical for relieving the auto-inhibition of full-length Drs2p, whereas the 1-104 N-terminal residues have an additional but more modest significance for activity. The present results therefore reveal that trimming off appropriate regions of the terminal extensions of Drs2p can greatly increase its ATPase activity in the presence of PI4P and demonstrate that relief of such auto-inhibition remains compatible with subsequent regulation by PI4P. These experiments suggest that activation of the Drs2p-Cdc50p flippase follows a multistep mechanism, with preliminary release of a number of constraints, possibly through the binding of regulatory proteins in the trans-Golgi network, followed by full activation by PI4P.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Fosfatos de Fosfatidilinositol/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/química , Arginina/química , Hidrólisis , Mutación , Proteínas de Transferencia de Fosfolípidos/química , Fosfolípidos/química , Fosforilación , Unión Proteica , Dominios Proteicos , Proteolisis , Trombina/química
9.
EMBO J ; 36(3): 250-251, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087581

Asunto(s)
Citocromos c
10.
Curr Opin Struct Biol ; 38: 137-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27362979

RESUMEN

Integral membrane proteins in eukaryotes are central to various cellular processes and key targets in structural biology, biotechnology and drug development. However, the number of available structures for eukaryotic membrane protein belies their physiological importance. Recently, the number of available eukaryotic membrane protein structures has been steadily increasing due to the development of novel strategies in construct design, expression and structure determination. Here, we examine the major expression systems exploited for eukaryotic membrane proteins. Additionally we strive to tabulate and describe the recent expression strategies in eukaryotic membrane protein structural biology. We find that a majority of targets have been expressed in advanced host systems and modified from their wild-type form with distinct focus on conformation and thermostabilisation. However, strategies for native protein purification should also be considered where possible, particularly in light of the recent advances in single particle cryo electron microscopy.


Asunto(s)
Eucariontes/genética , Ingeniería Genética/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Animales , Cristalización , Detergentes/farmacología , Expresión Génica/efectos de los fármacos , Humanos
11.
Nat Commun ; 6: 10140, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26673816

RESUMEN

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.


Asunto(s)
Membrana Celular/enzimología , Diacilglicerol Quinasa/química , Escherichia coli/enzimología , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Dominio Catalítico , Membrana Celular/química , Cristalografía por Rayos X , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Escherichia coli/química , Escherichia coli/genética , Modelos Moleculares , Conformación Proteica
12.
Structure ; 23(10): 1779-1780, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445489

RESUMEN

In this issue of Structure, Beale et al. (2015) define structurally and functionally a large extracellular domain unique to mammalian peptide transporters and its implications for the transport of basic di- and tri-peptides (Beale et al., 2015).


Asunto(s)
Oligopéptidos/química , Simportadores/química , Tripsina/química , Animales , Humanos
13.
Structure ; 23(2): 290-301, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25651061

RESUMEN

Proton-coupled oligopeptide transporters belong to the major facilitator superfamily (MFS) of membrane transporters. Recent crystal structures suggest the MFS fold facilitates transport through rearrangement of their two six-helix bundles around a central ligand binding site; how this is achieved, however, is poorly understood. Using modeling, molecular dynamics, crystallography, functional assays, and site-directed spin labeling combined with double electron-electron resonance (DEER) spectroscopy, we present a detailed study of the transport dynamics of two bacterial oligopeptide transporters, PepTSo and PepTSt. Our results identify several salt bridges that stabilize outward-facing conformations and we show that, for all the current structures of MFS transporters, the first two helices of each of the four inverted-topology repeat units form half of either the periplasmic or cytoplasmic gate and that these function cooperatively in a scissor-like motion to control access to the peptide binding site during transport.


Asunto(s)
Bacterias/genética , Modelos Moleculares , Simportadores/química , Bacterias/metabolismo , Transporte Biológico Activo/fisiología , Cristalografía , Espectroscopía de Resonancia por Spin del Electrón , Simulación de Dinámica Molecular , Conformación Proteica , Análisis Espectral , Simportadores/metabolismo
14.
Chem Sci ; 6(1): 442-449, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25530835

RESUMEN

Lysine is a ubiquitous residue on protein surfaces. Post translational modifications of lysine, including methylation to the mono-, di- or trimethylated amine result in chemical and structural alterations that have major consequences for protein interactions and signalling pathways. Small molecules that bind to methylated lysines are potential tools to modify such pathways. To make progress in this direction, detailed structural data of ligands in complex with methylated lysine is required. Here, we report a crystal structure of p-sulfonatocalix[4]arene (sclx4) bound to methylated lysozyme in which the lysine residues were chemically modified from Lys-NH3+ to Lys-NH(Me2)+. Of the six possible dimethyllysine sites, sclx4 selected Lys116-Me2 and the dimethylamino substituent was deeply buried in the calixarene cavity. This complex confirms the tendency for Lys-Me2 residues to form cation-π interactions, which have been shown to be important in protein recognition of histone tails bearing methylated lysines. Supporting data from NMR spectroscopy and MD simulations confirm the selectivity for Lys116-Me2 in solution. The structure presented here may serve as a stepping stone to the development of new biochemical reagents that target methylated lysines.

15.
Nat Struct Mol Biol ; 21(11): 1006-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25282149

RESUMEN

Neurotransmitter/sodium symporters (NSSs) terminate synaptic signal transmission by Na+-dependent reuptake of released neurotransmitters. Key conformational states have been reported for the bacterial homolog LeuT and an inhibitor-bound Drosophila dopamine transporter. However, a coherent mechanism of Na+-driven transport has not been described. Here, we present two crystal structures of MhsT, an NSS member from Bacillus halodurans, in occluded inward-facing states with bound Na+ ions and L-tryptophan, providing insight into the cytoplasmic release of Na+. The switch from outward- to inward-oriented states is centered on the partial unwinding of transmembrane helix 5, facilitated by a conserved GlyX9Pro motif that opens an intracellular pathway for water to access the Na2 site. We propose a mechanism, based on our structural and functional findings, in which solvation through the TM5 pathway facilitates Na+ release from Na2 and the transition to an inward-open state.


Asunto(s)
Bacillus/química , Proteínas Bacterianas/química , Sodio/química , Triptófano/química , Secuencia de Aminoácidos , Bacillus/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Transporte Biológico , Cationes Monovalentes , Secuencia Conservada , Cristalografía por Rayos X , Expresión Génica , Cinética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología Estructural de Proteína , Especificidad por Sustrato
16.
EMBO Rep ; 15(8): 886-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24916388

RESUMEN

An enigma in the field of peptide transport is the structural basis for ligand promiscuity, as exemplified by PepT1, the mammalian plasma membrane peptide transporter. Here, we present crystal structures of di- and tripeptide-bound complexes of a bacterial homologue of PepT1, which reveal at least two mechanisms for peptide recognition that operate within a single, centrally located binding site. The dipeptide was orientated laterally in the binding site, whereas the tripeptide revealed an alternative vertical binding mode. The co-crystal structures combined with functional studies reveal that biochemically distinct peptide-binding sites likely operate within the POT/PTR family of proton-coupled symporters and suggest that transport promiscuity has arisen in part through the ability of the binding site to accommodate peptides in multiple orientations for transport.


Asunto(s)
Proteínas Bacterianas/química , Streptococcus thermophilus , Simportadores/química , Sitios de Unión , Cristalografía por Rayos X , Dipéptidos/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Oligopéptidos/química , Estructura Secundaria de Proteína , Especificidad por Sustrato
17.
Nature ; 497(7450): 521-4, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23676677

RESUMEN

Diacylglycerol kinase catalyses the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid for use in shuttling water-soluble components to membrane-derived oligosaccharide and lipopolysaccharide in the cell envelope of Gram-negative bacteria. For half a century, this 121-residue kinase has served as a model for investigating membrane protein enzymology, folding, assembly and stability. Here we present crystal structures for three functional forms of this unique and paradigmatic kinase, one of which is wild type. These reveal a homo-trimeric enzyme with three transmembrane helices and an amino-terminal amphiphilic helix per monomer. Bound lipid substrate and docked ATP identify the putative active site that is of the composite, shared site type. The crystal structures rationalize extensive biochemical and biophysical data on the enzyme. They are, however, at variance with a published solution NMR model in that domain swapping, a key feature of the solution form, is not observed in the crystal structures.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/metabolismo , Diacilglicerol Quinasa/química , Diacilglicerol Quinasa/metabolismo , Proteínas de la Membrana/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Diacilglicerol Quinasa/genética , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas , Lípidos , Magnesio/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Zinc/farmacología
18.
J Appl Crystallogr ; 45(Pt 6): 1330-1333, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23162163

RESUMEN

A simple and inexpensive protocol for producing crystals in the sticky and viscous mesophase used for membrane protein crystallization by the in meso method is described. It provides crystals that appear within 15-30 min of setup at 293 K. The protocol gives the experimenter a convenient way of gaining familiarity and a level of comfort with the lipidic cubic mesophase, which can be daunting as a material when first encountered. Having used the protocol to produce crystals of the test protein, lysozyme, the experimenter can proceed with confidence to apply the method to more valuable membrane (and soluble) protein targets. The glass sandwich plates prepared using this robust protocol can further be used to practice harvesting and snap-cooling of in meso-grown crystals, to explore diffraction data collection with mesophase-embedded crystals, and for an assortment of quality control and calibration applications when used in combination with a crystallization robot.

19.
Nature ; 487(7408): 514-8, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22763450

RESUMEN

Cytochrome c oxidase is a member of the haem copper oxidase superfamily (HCO). HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme's function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain, which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.


Asunto(s)
Grupo Citocromo c/metabolismo , Citocromos a3/metabolismo , Citocromos a/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Thermus thermophilus/enzimología , Azurina/metabolismo , Dominio Catalítico , Membrana Celular/metabolismo , Cristalización , Cristalografía por Rayos X , Transporte de Electrón , Electrones , Glicerofosfolípidos/química , Glicerofosfolípidos/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protones , Agua/química , Agua/metabolismo
20.
Nature ; 477(7366): 549-55, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21772288

RESUMEN

G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The ß(2) adrenergic receptor (ß(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric ß(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the ß(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the ß(2)AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Dominio Catalítico , Bovinos , Cristalización , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...